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Over the past decade, polypharmacy the concurrent use of multiple medications to treat patients 

with complex or multiple health conditions has become increasingly common. While necessary, 

this practice elevates the risk of drug-drug interactions (DDIs), which can result in serious 

adverse drug events (ADEs). Artificial intelligence (AI) has emerged as a promising tool for 

predicting DDIs, helping clinicians make more informed pharmacotherapy decisions. AI can 

process vast datasets and identify patterns that may not be immediately apparent to human 

experts, offering valuable support in medication management. However, one of the primary 

challenges limiting the widespread adoption of AI in clinical settings is the lack of transparency 

in many models, often referred to as “black-box” systems. These models provide predictions 

without clearly explaining how those predictions were made, reducing trust among healthcare 

providers. To address this, explainable AI (XAI) techniques have been introduced to improve 

model interpretability, enabling clinicians to understand and validate the reasoning behind AI-

generated insights. In addition to predicting DDIs, AI is being developed to forecast interactions 

involving food, excipients, and the human microbiome further enhancing its utility in 

personalized medicine. Machine learning models that incorporate drug similarity, molecular 

structure, and the activity of metabolic enzymes such as cytochrome P450 have shown significant 

progress in predicting complex interactions. This review explores key methodologies, databases, 

and algorithms in DDI prediction, emphasizing AI’s expanding role in improving clinical decision-

making and patient safety, while reinforcing the importance of transparency through the 

integration of XAI techniques. 
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Introduction 

Drug-drug interactions (DDIs) can lead to adverse drug 

events (ADEs), increasing patient risks, especially in 

polypharmacy cases. Traditional experimental methods for 

detecting DDIs are slow and resource-intensive. Artificial 

intelligence (AI) offers faster, data-driven predictions but 

often operates as a "black-box," limiting interpretability. AI 

is also used to analyze drug-food-microbe interactions, 

improving treatment safety. Despite advancements, AI 

models typically predict single interactions rather than 

complex, multi-drug interactions seen in clinical settings. 

Future research should focus on holistic AI models capable 

of providing comprehensive insights into drug therapies, 

enhancing drug safety and treatment optimization  in 

healthcare [1-3].  

Algorithms commonly used machine learning 

methods 

Machine learning (ML) is a broad term encompassing a 

category of algorithms capable of extracting hidden patterns 

from extensive recorded data and utilizing them for 

prediction or computation. The ML workflow involves data 

acquisition, data preprocessing, algorithm selection, model 

training, evaluation using a test dataset, parameter 

optimization, and model deployment. In recent years, ML 

techniques for computational prediction have gained 

significant popularity, assisting researchers in handling large 

datasets, identifying patterns, and forecasting unknown 

challenges. 

K-nearest neighbor 

The K-nearest neighbor (KNN) algorithm is a supervised 

learning technique suitable for classification tasks with 

limited prior  data knowledge. It requires minimal 

preprocessing,  no distinct training phase, and is  

 
*Corresponding Author 

 Rekala chaitanya Kumar 

 

Production and Hosted By 

www.saapjournals.org 

 

http://www.saap.org.in/
http://www.saapjournals.org/


Rekala CK. et al., Int J Indig Herbs Drugs 2025; 10(3): 7-12 

 

  

[8]  

 

 robust against outliers. KNN excels in large-scale 

categorization   

 but has drawbacks like lazy learning and high 

 computational demands. Jiang et al. used KNN to 

 predict drug-target interactions, outperforming 

 traditional methods like logistic regression with 

 faster data processing [4-6]. 

 Decision tree 

 The Decision Tree (DT) framework is  a hierarchical 

model used for classification a forecasting without 

requiring data preprocessing. It  processes quantitative 

and qualitative data, making  it ideal for 

categorization and regression tasks. Ng  et al. utilized 

DT to assess drug-drug interaction  data in 

pharmaceutical documentation, aiding in  evaluating 

drug guidelines and references  efficiently [7]. 

 Random forest 

 Random Forest (RF) is an ensemble  learning 

 technique that combines multiple Decision  Trees (DT) to 

 handle large datasets efficiently. Javed  et al. used RF, 

 Naïve Bayes, and J48 for Drug-Drug  Interaction 

 classification, with RF achieving a 0.99  accuracy. RF 

 offers high precision, fast training, and  efficient 

 parallel processing [8].. 

 Naive Bayes 

 Naive Bayes (NB) is a supervised  classification algorithm 

 based on probability theory,  excelling with small 

 datasets and independent  features. Though it 

 struggles with correlated data,  NB is  faster than 

 SVM and RF. Researchers have  successfully  applied 

NB in drug discovery, achieving  AUC scores of  75–

100% in predicting drug targets and DDIs [9-10]. 
• Support Vector Machin:  

 Support Vector Machine  (SVM) is a supervised 

 learning algorithm that  constructs an optimal 

 hyperplane for classification.  It  excels in both 

 linear and nonlinear tasks by  mapping data into 

 higher dimensions using kernel  functions. Chao et al. 

 developed an effective SVM  model for drug 

 interaction prediction using an RBF  kernel. (11). 

• Extreme gradient boosting: 

  Extreme Gradient  Boosting (XGBoost) is a high-

 performance ensemble  method for classification and 

 regression, excelling  in  accuracy and handling 

 missing data. Wu et al.  used  XGBoost to classify 

 CYP450 inhibitors,  achieving  90.4% 

 accuracy, outperforming deep  learning  models and 

 other ensemble techniques in  drug I nteraction 

 prediction. (12). 

• Logistic regression:  

 Logistic Regression (LR) is a  simple yet 

 interpretable classification method  suited for 

 binary problems. It struggles with  nonlinearity, 

 multicollinearity, and imbalanced  data. 

 Wang et al. used LR to analyze drug  interactions 

 in  China, identifying 1,979 cases.  Feature 

 selection  techniques like GBDT can enhance  LR’s 

 effectiveness in complex datasets. (13) 

• Gradient boosting decision treeGradient Boosting 

 Decision Trees (GBDT) use loss function gradients  to fit 

  

regression trees, offering high accuracy and  handling  

 

Fig:1 The ML workflow 

    nonlinear data well. Xuan et al. developed 

 DTIDBGT,       a       GBDT-based 

 model for  predicting drug– target 

 interactions. It reduces  class imbalance  

            effects and outperforms other advanced methods in  

      interaction prediction (14) 

 The process of ML includes data collection, data  

   processing, algorithm selection, algorithm training, 

 test set evaluation, parameter tuning and model 

 usage. 

3.   Data sets 

To support drug-drug interaction (DDI) prediction, 

databases like DDI Extraction 2011, DDI Extraction 2013, 

and DrugBank provide essential drug properties and DDI 

events. These datasets enable AI-driven identification of 

interactions, typically using binary values—1 for 

interaction and 0 for no known interaction. [15] 

4. Deep learning-based prediction model 

Deep learning (DL) is increasingly used for drug-drug 

interaction (DDI) prediction due to its ability to process 

complex relationships. Unlike traditional machine learning 

(ML), which relies on manual feature engineering, DL 

performs data representation and prediction 

simultaneously. Its superior classification performance 

drives its growing application in DDI extraction and 

prediction tasks. [16] 

•        Artificial neural network (ANN):  

 Artificial Neural  Networks (ANNs) identify         

hidden patterns in data  through interconnected 

neurons, solving linear and  nonlinear problems. 

ANN models have been used  for DDI prediction, 

including two-layer models,  feed-forward networks 

with ReLU activation, and  propagation methods 

over DDI graphs. XGBoost  classifiers further 

enhance classification accuracy  by predicting 

drug interactions. [17] 

•     Convolutional neural network (CNN): ConvolutNeural 

Networks (CNNs), inspired by the animal visual 

cortex, process grid-like data by extracting spatial 

features through convolution and pooling layers. 

CNNs are well-suited for DDI  prediction due  to 

their feature-learning capabilities and scalability. 

Activation functions like sigmoid  and softmax 

are  used for binary and multiclass 

classification,  respectively. 

•  Conventional CNN: Chen et al. used CNNs in a  bi-  

levelmodel to extract local and global features for DDI 

prediction. Wu et al. combined CNNs, pooling,  and 

attention-based RNNs to classify interactions.  
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  Quan et al. utilized CNNs with word embeddings, 

 max pooling for feature reduction, and a 

 SoftMax layer for classification. [18]  

•     Dependency-based CNN: Traditional CNNs     

 strugglewith long-distance word relationships in 

 DDI  instances, leading to data sparsity. Dep-      

 CNN  addresses this by using dependency 

 parsing trees  to  capture dependencies. 

 Liu et al.'s Dep- 

  CNN model  includes a look-up 

 table,  convolution, max-pooling,  and SoftMax 

 layers to  extract features and classify  DDIs 

 effectively. 

Deep CNN:  

Considering various properties in texts,  

 the successful application of Deep CNN (DCNN) in 

identifying complex patterns of image and video in 

computer vision suggested its application in DDIs 

extraction task. Sun et al. proposed a DCNN model which 

utilized a small convolution architecture to operate 

directly at the word level of the raw biomedical text input 

to get the embedding-based convolutional  features. 

Then, the SoftMax classifier will be used to  operate these 

features and extract DDIs from    biomedical literature. 

[19]  

Graph convolutional neural network (GCNN): GCNNs 

are used in DDI prediction to analyze drug molecular 

structures and interactions in non-Euclidean spaces. 

They represent drugs as nodes and interactions as edges. 

Models like SC-DDIS and GOGNN enhance feature 

extraction using graph-based learning, improving DDI 

prediction by capturing complex relationships between 

drug structures and            interactions. 

Recurrent neural network: RNNs, particularly LSTM and 

GRU, are widely used in DDI extraction tasks due to their 

memory mechanism for handling sequential  data. 

Models like BiLSTM, hierarchical RNN, and skeleton-

LSTM enhance DDI prediction by leveraging sentence 

structures, dependency paths, and attention mechanisms 

to extract meaningful relationships from biomedical texts 

and transcriptome data.[20] 

      Machine learning Methods 

 AI and ML methods predict interactions across domains 

like social networks, chemistry, and DDIs by processing 

large datasets and uncovering complex patterns. These 

approaches enhance predictive accuracy in fields such as 

NLP, biological systems, and recommender systems, 

offering insights that would be challenging or time-

consuming for humans to deduce. 

Supervised Learning:  

Supervised learning models are  trained using 

labeled data, where the input data is  paired with 

the corresponding output (e.g., the  presence or 

absence of an interaction). These models learn to 

predict interactions by identifying patterns  in 

the labeled training data. 

 Common Methods in Predicting Interactions: 

 Support  Vector Machines (SVM): SVM is used for 

 binary  classification tasks (e.g., predicting if two 

  

  

 drugs will  interact or if two users will engage in a  

 particular  behavior). SVMs create a hyperplane that 

 best  separates data points from different 

 classes. In the  case of predicting interactions, it 

 finds a decision  boundary between interacting 

 and non-interacting  entities. 

 Application:  

 Predicting drug-drug interactions or  social media 

 interactions. 

• Logistic Regression: Logistic regression is a statistical 

 model often used for binary classification tasks, 

 where the goal is to predict the probability of an 

 interaction occurring. It is used for predicting  

 whether two entities (e.g., users, drugs, products) will 

 interact in a specific way. 

 Application: 

 Predicting social interactions or predicting  

 whether two drugs might interact in the body. 

• Neural Networks (Feedforward and Recurrent): 

 Neural networks, particularly deep neural networks 

 (DNNs), are used to predict interactions between 

 entities 

 by learning  

 complex, nonlinear relationships from large datasets. 

 Recurrent neural networks (RNNs) are particularly 

 useful when the prediction depends on sequence-

 based data (e.g., time series interactions, user 

 behavior over time). 

 Application:  

 Predicting dynamic interactions in recommender 

 systems or social media platforms. 

• Unsupervised Learning:  

 Unsupervised learning involves finding patterns or 

 relationships in data that is not labeled. This is 

 particularly useful in domains where labeled 

 interaction data is sparse or unavailable. 

 Unsupervised learning can help identify new types of 

 interactions that were not previously known. 

 Common Methods: Clustering Algorithms (e.g., k-

 Means, DBSCAN): 

 Application: Identifying clusters of similar products 

 or drugs that might interact similarly, or detecting 

 communities within social networks. 

• Reinforcement Learning (RL):  

Reinforcement Learning (RL) is a method where 

agents learn to interact with an environment by 

taking actions and receiving feedback in the form of 

rewards or penalties. RL is useful for predicting 

interactions that involve decision-making, where the 

outcome is dependent on a series of actions and 

feedback. 

• Common Methods: Q-Learning: In the context of 

predicting interactions, Q-learning can be used to 

predict the optimal sequence of interactions, such as 

the best series of user actions on a platform or the 

best set of drug interactions to maximize efficacy 

while minimizing harm. 

 Application: 

 Predicting user interactions in social media platforms 

or optimizing therapeutic strategies involving drug  
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• Ensemble Methods: Ensemble methods combine 

 multiple machine learning models to improve the 

 accuracy of predictions. These methods are especially 

 useful in DDI prediction and other interaction-based 

 applications, as they can combine the strengths of 

 various models to reduce overfitting and bias. 

 Common Methods: Boosting: Boosting algorithms, 

 like AdaBoost or Gradient Boosting, iteratively 

 improve the predictions by adjusting weights on 

 misclassified samples. These methods can be effective 

 when predicting interactions that involve highly 

 complex  relationships between entities. 

 Application: Predicting DDIs, where the interaction 

 between drugs may depend on subtle, nonlinear 

 relationships. 

• Bagging: Bootstrap Aggregating, creates multiple 

 models from different subsets of the training data. It 

 can help to increase the robustness and reduce 

 variance in interaction prediction tasks. 

 Application: Social network analysis, where I

 nteractions are dynamic and complex, bagging can 

 predict future interactions based on historical data 

Challenges and Opportunities 

Although excellent results have been achieved using deep 

learning and knowledge graph for DDI prediction, there are 

still some issues that need to be resolved, which 

aresummarized as follows 

Performance evaluation under multi-label task 

Future perspectives 

The future perspectives of AI predicting interactions, 

particularly in areas like communication, human behavior, 

and decision-making, are vast and evolving. Here are a few 

key areas where AI is expected to significantly influence 

interactions: 

•    Personalized User Experiences: AI will continue to 

improve its ability to predict and understand 

individual preferences, behaviors, and needs. By 

analyzing past interactions, AI systems can tailor 

responses, recommendations, and experiences in 

real-time across various platforms, including social 

media, e-commerce, and entertainment. 

 Examples: 

  Personalized content feeds (like Netflix or YouTube), 

targeted marketing strategies, AI-driven customer 

service that predicts your needs before you even ask. 

• Human-AI Collaboration: 

  In the future, AI could work alongside humans to 

predict the flow of conversations, collaboration 

dynamics, and even emotional responses. This could 

lead to more seamless communication and enhanced  

 

collaboration in both professional and personal  

settings. 

           Examples:   

 Virtual assistants that predict and manage your work 

tasks, AI in team settings that can anticipate your 

needs, assist with brainstorming, and adjust based on 

group dynamics. 

• Human Behavior Modeling for Conflict 

Resolution: 

  AI could predict how individuals or groups will 

respond to different conflict resolution strategies, 

making it a powerful tool in areas like negotiation, 

diplomacy, or even social work.[22] 

 Examples: AI predicting outcomes of diplomatic 

negotiations, AI-backed tools for conflict resolution, 

or algorithms that forecast interpersonal disputes 

based on historical data and personality traits. 

• Real-Time Predictive Analytics:  

 AI will allow organizations to predict human 

behavior in real-time. This will open the door for 

more dynamic and responsive systems in marketing, 

retail, customer service, and even security. 

 Examples:  

 Predicting a customer's next purchase based on 

browsing habits, or anticipating when an employee 

may need a break to prevent burnout. 

• AI in Autonomous Systems:  

 In fields like autonomous vehicles, drones, or 

robotics, AI’s ability to predict human actions (such 

as pedestrian movements or the actions of other 

vehicles) will be crucial for ensuring safety and 

efficiency. 

 Examples: 

  Self-driving cars predicting the behavior of 

pedestrians, drones anticipating the movement of 

objects in their path, or robots that work alongside 

humans without colliding. 

• Advancements in Natural Language Understanding: 

Future AI systems will improve their understanding 

of context, tone, and subtleties in human language. 

This means more fluid and natural conversations 

with AI, and the ability to predict what kind of 

communication will be effective in various situations. 

Examples:  

 AI acting as a mediator in sensitive conversations, 

translating languages while maintaining cultural 

nuances, or using conversational AI to help in legal, 

psychological, or medical fields. 

Conclusion 

This study reviews AI models for predicting drug-drug 

interactions (DDIs), categorizing them into undirected 

prediction, drug interaction events, and asymmetric 

prediction. It highlights progress in the field, discusses 

commonly used datasets, and identifies model 

interpretability as a challenge. The paper advocates 

incorporating Explainable AI (XAI) and offers guidance for 

model selection and future research directions to enhance 

clinical relevance. 
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